Universally Composable Symbolic Analysis for Two-Party Protocols Based on Homomorphic Encryption
نویسندگان
چکیده
We consider a class of two-party function evaluation protocols in which the parties are allowed to use ideal functionalities as well as a set of powerful primitives, namely commitments, homomorphic encryption, and certain zero-knowledge proofs. With these it is possible to capture protocols for oblivious transfer, coin-flipping, and generation of multiplication-triples. We show how any protocol in our class can be compiled to a symbolic representation expressed as a process in an abstract process calculus, and prove a general computational soundness theorem implying that if the protocol realises a given ideal functionality in the symbolic setting, then the original version also realises the ideal functionality in the standard computational UC setting. In other words, the theorem allows us to transfer a proof in the abstract symbolic setting to a proof in the standard UC model. Finally, we have verified that the symbolic interpretation is simple enough in a number of cases for the symbolic proof to be partly automated using the ProVerif tool.
منابع مشابه
Practical and Employable Protocols for UC-Secure Circuit Evaluation over Zn
We present a set of new, efficient, universally composable two-party protocols for evaluating reactive arithmetic circuits modulo n, where n is a safe RSA modulus of unknown factorization. Our protocols are based on a homomorphic encryption scheme with message space Zn, zero-knowledge proofs of existence, and a novel “mixed” trapdoor commitment scheme. Our protocols are proven secure against ad...
متن کاملPractical and Employable Protocols for UC-Secure Circuit Evaluation over ℤn
We present a set of new, efficient, universally composable two-party protocols for evaluating reactive arithmetic circuits modulo n, where n is a safe RSA modulus of unknown factorization. Our protocols are based on a homomorphic encryption scheme with message space Zn, zero-knowledge proofs of existence, and a novel “mixed” trapdoor commitment scheme. Our protocols are proven secure against ad...
متن کاملUniversally Composable Oblivious Transfer in the Multi-party Setting
We construct efficient universally composable oblivious transfer protocols in the multi-party setting for honest majorities. Unlike previous proposals our protocols are designed in the plain model (i.e., without a common reference string), are secure against malicious adversaries from scratch (i.e., without requiring an expensive compiler), and are based on weaker cryptographic assumptions than...
متن کاملUniversally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption
We present a new general multiparty computation protocol for the cryptographic scenario which is universally composable — in particular, it is secure against an active and adaptive adversary, corrupting any minority of the parties. The protocol is as efficient as the best known statically secure solutions, in particular the number of bits broadcast (which dominates the complexity) is Ω(nk|C|), ...
متن کاملOn Symbolic Analysis of Cryptographic Protocols
The universally composable symbolic analysis (UCSA) framework layers Dolev-Yao style symbolic analysis on top of the universally composable (UC) secure framework to construct computationally sound proofs of cryptographic protocol security. The original proposal of the UCSA framework by Canetti and Herzog (2004) focused on protocols that only use public key encryption to achieve 2-party mutual a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013